
CATT DLL Directivity Interface (DDI) v1.0

DDI White Paper
Rev. 0, 981021 (first public version)

Copyright © CATT 1998
www.netg.se/~catt

1. Introduction

1.1 Abbreviations used

pred. : prediction software, e.g. CATT-Acoustic

manuf. : manufacturer of loudspeaker / provider of interface

1.2 The DDI goal/purpose

First, as a reminder, a WIN32 DLL (Dynamic Link Library, sometime called a plug-in) is basically like
any other program running under Windows 95, Windows NT or higher but that does not have to be
linked in and loaded together with an executable (EXE-file). A DLL can be loaded at will to perform
specific tasks e.g. based on user selections. A common text-book example of how DLLs may be
employed is if someone wants to create a terminal emulator. Depending on the users’ choice of
terminal, say VT220, only the VT220 DLL needs to be loaded instead of all available emulators having
to be linked in creating a huge EXE-file. It also makes it easier to upgrade specific parts of a software if
they are created as DLLs.

Further, for many tasks including the DDI described here, the DLL programmer does not have to
learn anything about programming the WIN32 graphical user interface (GUI). Standard programming
skills will suffice and only some language/compiler-dependent specific compiler and linker directives
need to be set properly so that a WIN32 DLL is created instead of an EXE.

Purpose and goals of the CATT WIN32 DLL Directivity Interface (DDI) are:

• To provide a unified interface towards any kind of directivity be it measured, simulated or
analytically described and at virtually any angular and frequency resolution. Rather than a complex
file format the DLL interface is based on a query principle: The pred. first asks the DLL what kind
of data, resolutions and options it supports and then decides, based on what it can handle itself,
what it will use and then tells the DLL so.

To create a file-format with the same flexibility would be very difficult and would take a very
long time to agree on. Such a file format will also be very difficult to use while still not
allowing for runtime simulation of e.g. arrays. A good example of a “too” complex file-format
is the RIFF-WAVE format (commonly known as the WAV-file). The format specification allows
for an enormous flexibility but in practice 99% of all WAV-files only contain a header “chunk”
giving sample rates, a mono/stereo flag and a few other details and then the actual data chunk
with the wave-form. The format can, however, among many other things handle multi-channel
sound, loop points and private chunks but almost no playing/editing software can handle it.
Indeed, some WAV-file editors and players even fail to read the files at all if they contain
anything beyond the basic mono or stereo sound data or, if they can read further chunks, they
may not preserve them after a save.

• To enable prediction accurate using sound sources that defy the simple measured fixed 3D-balloon
concept, e.g. array or wave-guide designs with distance dependent directivity (non-spherical
spreading). In deed, a fixed 3D balloon can easily be 10-20 dB in error for such sources and the
reason is not a limited angular or frequency resolution (at 1º and 1/32-octave resolution it will still
be 10-20 dB off at some distances).

Contents
1. Introduction
2. Typical calling sequence
3. Interface definitions
4. Angle conventions
5. DLL implementor tips

CATT DLL Directivity Interface (DDI) White Paper

2(6)

• To make it possible for a manuf. to provide as accurate data as possible and it is up to each pred. to
use it. It will put some pressure on manuf. to make available high-accuracy data or run-time
simulation of arrays as well as it puts pressure on pred. to use what becomes available. This is in
contrast to letting the resolution be dictated by a particular pred. because of a ‘de facto’ standard.
However, even with the flexibility the DDI offers, it is still of highest importance to discuss what
resolutions are required and the interface may make it simpler to do comparisons between various
resolutions.

• To be general and not locked to CATT-Acoustic. Any other modeling package running under 32-bit
Windows can use the specifications of the interface. Interface descriptions will be available in C,
Delphi and Modula-2 (Visual Basic if possible). It is optional for a pred. to make its own DLL, e.g.
for array modeling or to access its private data-bases, using unique pred. features. The benefit
would be a unified interface independent of underlying data structures. The interface includes a
simple protection mechanism that can be used for private pred. DLLs or for those that may be
licensed. With CATT-Acoustic the DDI directivity format is called SD2 in addition to existing SD0
and SD1 formats and is used exactly in the same manner.

• To be upward compatible where one set of features is required and another (possibly expanding)
set is optional. As long as the basic features are all implemented correctly old versions of an
interface will remain compatible. The pred. queries the optional items available and does not call
not implemented ones (this typically concerns non-acoustical items e.g. returning a manuf. logo or
a full 3D description of the loudspeaker cabinet).

• To provide data and “intellectual property” hiding. This is especially important with DSP-
controlled arrays where the applied technology may even be patented and the company does not
wish to spread their knowledge to every single pred. An example of how this can be done is the
DURAN_CATT.DLL for Duran Audio’s AXYS Intellivox series available for CATT-Acoustic v7.1
where all array specifications and DSP details are completely hidden in the DLL while still making
user beam-steering possible.

• To provide a mechanism for on-line documentation of each loudspeaker model implemented via a
dedicated WIN32 help-file associated with each DLL. Within this help-file any required model
details can be given and if necessary an internet link to the manuf. home page for more in-depth
information. Further, such a help-file can include step-by-step selection guides and similar for the
various models a manuf. offers. Since many tools for making HTML-files are available the
documentation can as well be made for a www browser or in Adobe Acrobat PDF-format.

• To remove the risk of accidental or deliberate altering of directivity data. Also, since the manuf.
can use his own database, instead of converting to another file format, the risk of errors in
translating are diminished and database maintenance is simplified.

• It is anticipated that direct sound and perhaps even 1st order reflections must be handled with
higher frequency resolutions than the octave-band resolution currently in use with most pred. The
interface makes it possible for a manuf. to return both 1/1-, 1/3-, 1/6 and 1/12-octave and FIR data
(at least 1/1-octave data must be returned). It is then up to each pred. to use e.g. FIR or 1/3-octave
data for direct sound and 1/3 or 1/1-oct for reflections. Since the interface knows that the FIR and
1/12-octave data is not likely to be called for each single of thousands of rays but only for those
that directly hit a receiver, the interface can supply more accurate data that may even be simulated
(e.g. for DSP-controlled arrays that are hard to measure because the extended near-field and also
because there may a very high number of settings possible). If audience area mapping is used there
can be many direct rays but it can be made optional to use the more accurate data since the inter-
face also provides a model-dependent accuracy level control so that a speed/ accuracy trade-off
choice can be made by the user or the pred.

• The angular resolution of the returned directivity is decided by the manuf. and a value is returned
for each requested frequency band that typically would be properly interpolated between
measurement points or even simulated at the exact angles for DSP-controlled arrays with variable
settings (e.g. the DURAN_CATT.DLL). This opens up for use of higher resolution than the

CATT DLL Directivity Interface (DDI) White Paper

3(6)

common 10º 1/1-octave format (or the emerging 5º 1/3-octave format) without requiring the
specification of a new file format. In deed, the resolution can be 1º in the front (or exact angle if
simulated) and 10º in the back since these details are all hidden to the pred. Also, a simpler
simulation may be employed for array far-field directivity requests (e.g. a fixed pre-calculated or
measured 3D-balloon at sufficient resolution). The manuf. can do as he means is appropriate for
his various lsp models.

• Note: the DDI concept must not be confused with the Device Driver Interface of WIN32. Since the
WIN32 DDI is known only to hardware driver programmers there should be no problem using the
abbreviation also for the current application.

1.3 Interface basics

Since there may be many DLL-interfaces the approach where a reference-file is linked with the pred.
executable cannot be used but instead all procedures are called using a sequence of :

LoadLibrary(…); (* WIN32: gives a unique BRAND DLL handle *)

GetProcAddress(…); (* WIN32: gives a pointer to the requested DLL procedure *)
Call the procedure

GetProcAddress(…);
Call the procedure

…

FreeLibrary(…); (* WIN32: closes the DLL again *)

The interface specification provides string literals for public names of procedures and each pred.
typically writes higher-level wrapper functions of his own choice.

Any pred. that wishes to support the DLL-interface needs, in addition to be able to interface to the
various procedures defined, needs to provide a user interface to handle, keep track of and allow editing
of the following simple items:

• A unique folder for each manuf. where the DLL itself and its help-file resides as well as any other
data required by the particular manuf. The DLL implementor expects to find his data in the same
folder as the DLL or in sub-folders organized as the implementor sees fit (the DLL folder can be
found by calling the WIN32 GetModuleFileName() function). It may sometimes be beneficial to
put the data into the resources of the DLL rather than as separate files.

• The DLL name (say BrandX.DLL)

• Model names that uniquely identifies each loudspeaker model in the DLL (the interface
implements a DDI_EnumModels function that making it possible to present a model list to a user)

• A version for each model (i.e. which DLL version it is made for)

• Be able to load a WIN32 help-file or display a text-file with dedicated DLL help (with the same
name as the DLL i.e. BrandX.HLP and located in the same folder). This can be extended to PDF-
and HTML-files as well.

• Additional data for those models that have such (e.g. a script that describes an array so that it can
be well modeled using maths inside the DLL, or back-panel settings for beam-steering). The data
is sent to the interface as a linked list of strings that the interface will know how to interpret. The
Pred. will only have to maintain the list and make it available for editing.

• The interface implements a model-dependent accuracy setting so that those manuf. that wish can
offer a choice between speed and accuracy depending on the type of application.

CATT DLL Directivity Interface (DDI) White Paper

4(6)

• Depending on how the prediction is made several interface DLLs may have to be open simul-
taneously each with its own unique DLL handle.

2. Typical calling sequence

(names starting with DDI_ and in Courier Bold are part of the DDI definition, names in Courier are
WIN32 functions)

Get the selected BRAND and model name selected from the user.

Load the BRAND DLL (LoadLibrary)

Initialize the interface (DDI_InitInterface)

Initialize the lsp model with the model name and optional data (DDI_InitLsp)

Query the DLL for what kinds of resolutions are available for the model (DDI_GetResolutions)

Tell the DLL what kinds of resolutions will be used (DDI_SetResolutions)

Query the DLL for upper/lower bands available (DDI_Get MinLower/MaxUpper Band)

Tell the DLL what upper/lower bands will be used (DDI_Set Lower/Upper Band)

If RES_FIR is used:

Query the sample-rates available (DDI_GetFIRRates)

Tell the DLL the sample-rate that will be used (DDI_SetFIRRate)

Query the FIR sizes available at the sample-rate selected (DDI_GetFIRSizes)

Tell the DLL the FIR-size that will be used (DDI_SetFIRSize)

Query the valid frequency ranges possible (DDI_Get MinLower/MaxUpper Frequency)

Tell the DLL the frequency range that will be used (DDI_Set Lower/Upper Frequency)

Query the FIR data-types available (DDI_GetFIRTypes)

Tell the DLL the FIR data-type to use: (DDI_SetFIRType)

Query the DLL if the directivity is distance dependent (DDI_IsDistanceDependent), if it is it should be
used by the Pred.

Query various other acoustical properties: (DDI_GetBandSensitivity, DDI_GetBandMaxInputPower,

DDI_GetBandDirectivityIndex)

Query various other items as needed: (DDI_GetOptions, DDI_GetModelInfoLength,

DDI_GetModelInfo, DDI_Get3DOutline)

Perform the prediction as desired: (DDI_GetBandDirectivity, DDI_GetFIRDirectivity (if RES_FIR

is used))

Release the model (DDI_ReleaseLsp)

Free the BRAND DLL (release any internal resources at the WEP) (FreeLibrary)

CATT DLL Directivity Interface (DDI) White Paper

5(6)

3. Interface definitions

The interface has been designed without using language-specific features so that it can be implemented
in any language that can create a WIN32 DLL. In some cases there may be compiler switches
necessary to set parameter passing methods but the interface is based on the most common C calling
convention for WIN32 (the same as WIN32 itself uses). For a detailed description, contact CATT at
catt@netg.se .

4. Angle conventions
The coordinate system and angle convention used is:

z

y

xhv

Where
x is forward (along the geometrical axis)
y is to the left (as seen from the speaker)
z is upwards
origin is at the acoustical center of the source or at a reference point on an array

h is the horizontal angle 0 to 2π (where 0 is forward and angles increase to the left as seen
from the source)

v is the vertical angle -π/2 to π/2 (where 0 is forward, negative angles are above the horizontal
plane and positive below).

This convention makes it possible to refer to the on-axis value as (0,0). To convert (h,v) to standard
spherical angles (θ,φ) (see e.g. Standard Mathematical Tables) use:

θ = h
φ = v + π/2

5. DLL Implementor tips

• Note that even if the number of procedures defined may make it seem like a difficult DLL to
create, most of the procedures (functions) answers simple questions (e.g. What is the highest 1/1-
octave-band you can supply?). Sample template source code will be available.

• For simulated models with variable input data it may be beneficial to cache each calculated value
since it may be used again and can be looked up in a list for faster results.

• Depending on the complexity of a loudspeaker or array, any approach from fixed balloons, to
distance dependent balloons (interpolated between balloons based on distance, see fig) to full-
blown simulation can be hidden in the DLL interface. The fig illustrates an approach with pre-
calculated or measured balloons at several distances that are interpolated in-between:

The CATT_Generic DLL, in addition to array modeling, offers a model that takes a number of
measured or simulated full-space 10º balloons at a number of distances and interpolates between

distance

CATT DLL Directivity Interface (DDI) White Paper

6(6)

them automatically. This can be a way to quickly get distance-dependent data into a useable format
before deciding on making a dedicated DLL and is nearly as fast as using a normal fixed 3D
balloon.

• Data can be put in a resource file and bound to the DLL rather than put as separate files. The
benefit is data hiding and easier maintenance since only a single DLL file is required.
